Z-eigenvalue methods for a global polynomial optimization problem
نویسندگان
چکیده
As a global polynomial optimization problem, the best rank-one approximation to higher order tensors has extensive engineering and statistical applications. Different from traditional optimization solution methods, in this paper, we propose some Z-eigenvalue methods for solving this problem. We first propose a direct Z-eigenvaluemethod for this problemwhen the dimension is two. Inmultidimensional case, by a conventional descent optimization method, we may find a local minimizer of this problem. Then, by using orthogonal transformations, we convert the underlying supersymmetric tensor to a pseudo-canonical form, which has the same E-eigenvalues and some zero entries. Based upon these, we propose a direct orthogonal transformation Z-eigenvalue method for this problem in the case of order three and dimension three. In the case of order three and higher dimension, we propose a heuristic orthogonal transformation Z-eigenvalue method by improving the local minimum with the lower-dimensional Z-eigenvalue methods, and a heuristic cross-hill Z-eigenvalue method by using the two-dimensional Z-eigenvalue method to find more local minimizers. Numerical experiments show that our methods are efficient and promising. This work is supported by the Research Grant Council of Hong Kong and the Natural Science Foundation of China (Grant No. 10771120). L. Qi (B) Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong e-mail: [email protected] F. Wang Department of Mathematics, Hunan City University, Yiyang, Hunan, China e-mail: [email protected] Y. Wang School of Operations Research and Management Sciences, Qufu Normal University, Rizhao Shandong 276800, China e-mail: [email protected]
منابع مشابه
Eigenvalue analysis of constrained minimization problem for homogeneous polynomial
In this paper, the concepts of Pareto H -eigenvalue and Pareto Z -eigenvalue are introduced for studying constrained minimization problem and the necessary and sufficient conditions of such eigenvalues are given. It is proved that a symmetric tensor has at least one Pareto H -eigenvalue (Pareto Z -eigenvalue). Furthermore, theminimumPareto H -eigenvalue (or Pareto Z -eigenvalue) of a symmetric ...
متن کاملAn nD-systems approach to global polynomial optimization with an application to H2 model order reduction
The problem of finding the global minimum of a multivariate polynomial can be approached by the matrix method of Stetter-Möller, which reformulates it as a large eigenvalue problem. The linear operators involved in this approach are studied using the theory of nD-systems. This supports the efficient application of iterative methods for solving eigenvalue problems such as Arnoldi methods and Jac...
متن کاملA New Hybrid Conjugate Gradient Method Based on Eigenvalue Analysis for Unconstrained Optimization Problems
In this paper, two extended three-term conjugate gradient methods based on the Liu-Storey ({tt LS}) conjugate gradient method are presented to solve unconstrained optimization problems. A remarkable property of the proposed methods is that the search direction always satisfies the sufficient descent condition independent of line search method, based on eigenvalue analysis. The globa...
متن کاملGlobal optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory
Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...
متن کاملSpectral bundle methods for non-convex maximum eigenvalue functions: first-order methods
Many challenging problems in automatic control may be cast as optimization programs subject to matrix inequality constraints. Here we investigate an approach which converts such problems into non-convex eigenvalue optimization programs and makes them amenable to non-smooth analysis techniques like bundle or cutting plane methods. We prove global convergence of a first-order bundle method for pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 118 شماره
صفحات -
تاریخ انتشار 2009